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SOME UNIFIED INTEGRALS ASSOCIATED WITH THE
GENERALIZED STRUVE FUNCTION
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ABSTRACT. This paper is devoted for the study of a new generalization
of Struve type function. In this paper, we establish four new integral
formulas involving the Galué type Struve function, which are express in
term of the generalized (Wright) hypergeometric functions. The result
established here are general in nature and are likely to find useful in
applied problem of sciences, engineering and technology.
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1. INTRODUCTION

Recently, Nisar et al. [15], defined as following generalized form of Struve
function named as generalized Galué type Struve function (GTSF):
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! (=) 2\ 2k+p+1
(1) awpfee(s) = z
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(a €N, p, b, c € C),

where A > 0, ¢ > 0 and p is an arbitrary parameter. For the more details
on the Struve function and its generalizations, one may refer to the recent
papers (5], [6], [8], [19], [20] and [21].

Particularly, when A = a = 1, p = 3/2 and £ = 1 in equation (1), it
reduces to generalization of Struve function which is defined by [18], as

under:
ad (—c)" 2\ 2k+p+1
92 z
( ) p,bc z%r k+ (k+p+b+2) <2>
(p, b, c € C).

Further, the detailed study related to the function H,, , . (#) and its partic-
ular cases can be seen in [1], [2], [12], [13], [14] and [16]
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For our present investigation, we need to recall the following Oberhettinger’s
integral formula [17]:

= - - (@ LW — )
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(3) /0 x (x+a,+ x +2am> dz =2Xa (2) T+ A7)
provided 0 < R(u) < R(N).
We also recall the following Lavoie-Trottier integral formula [9]:

@ [femamam (-5 -9 e (5) TR

provided R(a) > 0,R(8) > 0. In recent years, various useful integral for-
mulas associated with the variety of special functions have been studied by
several authors, see [3],[4],[10] and [11].

The generalized Wright hypergeometric function ,1q(z) [24] (see, for de-
tail, Srivastava and Karlsson [23]), for z € C complex, a;, b; € C and
a;, Bj € R, where (o, 85 # 0;i=1,2, ..., p;j=1,2,...,q), is defined as
under:

o0

_ (@i, @) 1,p D(a; + a;k) z’f
() ptq(z) = pwq{ (bj, Bi) 1.4 } Z T(b; + B,k)k

under the condition:
q P
® I S
j=1 i=1

It is noted that the generalized (Wright) hypergeometric function ,¢, in (5)
whose asymptotic expansion was investigated by Fox [7] and Wright is an
interesting further generalization of the generalized hypergeometric series as
follow:

(a1, 1), ..., (ap. 1) | T2 T(ey) AU
(7) P‘I’Q[ b, 1),...,(25, 1) z}—%lp@qu[%ﬁ,...,Z; Z]

where , Fy is the generalized hypergeometric series defined by (see [20, Sec-
tion 1.5])

at, ..., Qp; _ 2 (@1)n - (op)n2™
(8) qu[ B, .. ﬁj, } nz% B)n - (Bg)nr!

=p Fy(oa, ..., ap; B1, - ., By 2),
where (\), is the Pochhammer symbol defined (for A € C) by (see [22]):

_J 1(n=0)
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and Zg denotes the set of nonpositive integers.

The main object of this paper is to establish certain new integrals in-
volving the Galué type Struve function, which are express in term of the
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generalized (Wright) hypergeometric functions. In order to obtain our main
results, we use the generalized Galué type Struve function (1), with suitable
arguments, as the integrand of the integrals (3) and (4).

2. MAIN RESULTS

We will now give our main integral formulas as under:

Theorem 2.1. Let a € N X\, p,b,c € C; v > 0 and ¢ is an arbitrary
parameter be such that 0 < R(u) < R(A+p-+1) then there hold the following
results:

oo -A
10 / Pt (:c +a+ Va2 + Qa:c) w?? ( Y ) dx
10y “rbet \ 1o+ Va2 + 20z
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—cy
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x31h4
(6.0), (B+4+10) A +p+1,2), (A +p+p+22)

Proof. By making use of (1) in the integrand of (10), and then interchang-
ing the order of integral sign and summation, which is verified by uniform
convergence of the involved series under the given conditions, we get
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Now, on applying the integral formula (3) to the above integral in right hand
side of (11), and obtain the following expression:
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which in accordance with the definition (5), yield to the result (10). This
completes the proof of the theorem. O
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Theorem 2.2. Supposea € N X\, p, b, c € C; v >0 and J is an arbitrary
parameter be such that 0 < R(u) < R(A+p+ 1), then

12 zht (z +a+Va2+ an) w?? < : > dx
( ) /0 a%p,b,c,§ .’L'+(I,+‘/.’E2+2ﬂ‘.’13
= 27T (A — 4 1)
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—cy
4

X314
(6,0), (B+ 5+ La) (A4 p+1,2), (A p+2p+2,4);

Proof. By similar manner as in proof of Theorem 2.1, one can easily prove
the integral formula (12). Therefore, we omit the detailed proof. O

Theorem 2.3. The following integral formulas holds:

(13) /01 w7 (1 - z)?P! (1 - g)ga*l (1 - %)671
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Xaw;):(g,c,f (y (1 - Z) (1 — x)2) dx
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provided a € N X\ p,b,¢c € C; v > 0 and 6 an arbitrary parameter, such
that R(a) >0, R(B+p+1) > 0.

Proof. By making use of (1) in the ingrand of (13) and then interchang-
ing the order of integral sign and summation, which is verified by uniform
convergence of the involved series under the given conditions, we get
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we can apply the integral formula (4) to the integral in (14) and obtain
the following expression:
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) 2a y p+1
:(5) (3) T
s (=e)fT (B +p+ 1+ 2k) Y\ 2k
X Z
gr(vk+5)r(ak+g+#)r(2a+ﬁ+p+1+2k)( )

2
In accordance with the definition of (5), we obatain the result (15). This
completes the proof of the theorem. O

Following the similar procedure, we further obtain the integral formula (15)
as under:

Theorem 2.4. Fora e N\ p, b, ¢ € C; v >0 and § an arbitrary param-
eter such that R(3) > 0, R (a+p+1) > 0, we have

1 2a—1 x\ B-1
1 a=1(1 _ »)26-1 (1 _ {) (1 _ _)
(15) [eta-a : :
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3. SPECIAL CASES

In this section, we derive certain new integrals involving known generalized
Struve function due to Orhan and Yagmur ([18]), as particular cases of our
main results.

To this end, if we set v = a = 1,0 = 3/2 and £ = 1 in the results of
Theorem 2.1 to 2.4, we obtain the following four corollaries associated with
the generalized Struve function (2):

Corollary 3.1. Let the condition of Theorem 2.1 be satisfied, then we have

o0 A
_ Y
16 / aht <Jc +a+ Va+ an) H < > dz
(16) 0 Poe\ 2+ a+ Va2 2ax
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X344 122

(p+%21), A +p+1,2), A +u+p+22),(3/2,1);

Corollary 3.2. If the condition of Theorem 2.2 be salisfied, then the fol-
lowing integral holds:
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(p+52,1), (A +p+1,2), (A +p+2p+2,4),(3/2,1);

Corollary 3.3. Under the valid condition of Theorem 2.3, we have
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Corollary 3.4. The following integral holds
1 201 B-1
a-1/1 _ \26-1(; T _z
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2
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(p+52,1), 2a+3+2p+2,4), (3/2,1);
provided the condition of Theorem 2.4 are satisfied.

Conclusion: Certain unified integral representations for the generalized
Struve function and its special cases are derived in this study. In this se-
quel, one can easily obtain integral representation of more generalized spe-
cial function, which has much application in physics and engineering science.
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